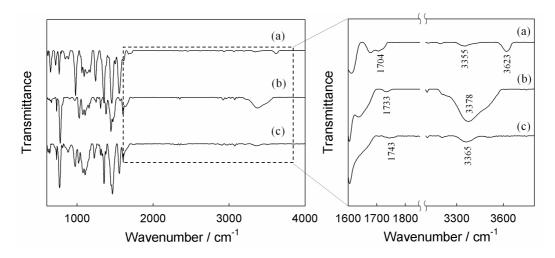
CHEMBIOCHEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2009


Supporting Information

for

Eosin Y-Sensitized Artificial Photosynthesis by Highly Efficient Visible-Light Driven Regeneration of Nicotinamide Cofactor

> Sahng Ha Lee, Dong Heon Nam, Jae Hong Kim, Jin-Ook Baeg, and Chan Beum Park*

Figure S1. Chemical structure of Eosin Y

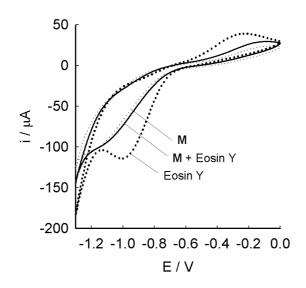


Figure S2. FT-IR spectra of Eosin Y (a), **M** ([Cp*Rh(bpy)H₂O]²⁺) (b), and a mixture of the two components (c). A peak corresponding to carboxyl C=O stretch of Eosin Y shifted from 1704 cm⁻¹ (in (a)) to 1743 cm⁻¹ (in (c)) by the addition of **M**, implying that the C=O stretch of Eosin Y carboxylic group is restricted by Rh-O bond in Eosin Y-**M** complex. At the same

time, the O-H stretch of H_2O (3378 cm⁻¹) present in **M** was significantly suppressed by the addition of Eosin Y (3365 cm⁻¹). It suggests that H_2O moiety in **M** was exchanged by Eosin Y. Also, the suppression of phenolic O-H stretch in Eosin Y (3623 cm⁻¹) implies that the Rh-O bond between Eosin Y and **M** is available through both carboxylic and phenolic groups of Eosin Y.

Figure S3. Linear sweep voltammograms of **M** (0.5 mM, -0.729 V) and Eosin Y (1 mM, -1.02 V) solutions on a glassy carbon disk electrode. Samples were prepared in a phosphate buffer (50 mM) at pH 7.0. The scan rate was 50 mVs⁻¹. A clear shift of reduction peak potential is observed in the mixture of **M** and Eosin Y (**M** + Eosin Y, -0.869 V) compared to the potentials of single compartments. This observation strongly supports the findings of Figure 4a and 4b in the main text.

Figure S4. Cyclic voltammograms of **M** (0.25 mM) and Eosin Y (0.05 mM) solutions on an Au disk electrode. Samples were prepared in a phosphate buffer (100 mM) at pH 7.0. The

scan rate was 100 mVs⁻¹. In contrast to the slight change of the cyclic voltammogram of **M** on a GC electrode, the voltammogram of EY showed more drastic changes on an Au electrode. Both cathodic (-1.0 V vs. Ag/AgCl) and anodic (-0.3 V vs. Ag/AgCl) peaks of EY disappeared with the addition of **M**. The shift of the reduction peak of **M** on a GC electrode, as well as the suppressed redox behavior of EY on an Au electrode, indicate that **M** functions as a primary electron acceptor in the EY-**M** complex.

Figure S5. The suggested direction of electron flow during photosensitization of Eosin Y. The excited electron of Eosin Y cascades through the intermediate state of the Eosin Y-M complex. The gradient of potential and the vicinity between Eosin Y and M made by the Eosin Y-M intermediate drive the flow of electron by photosensitization. The energy level of Eosin Y and M is against Ag/AgCl reference electrode (+0.197 V vs. NHE). Once the electron of EY at the known HOMO (1.09 V)³ is excited to the LUMO (-1.02 V, from Figure S5), it should cascade into M through the intermediate state of EY-M without radiation (e.g., fluorescence).

Figure S6. Synthetic procedure of organometallic compound [Cp*Rh(bpy)Cl]Cl.

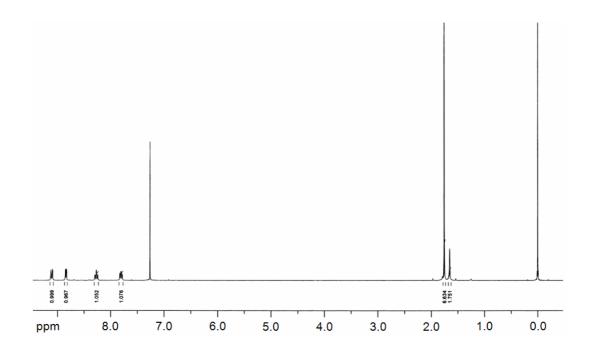


Figure S7. NMR spectrum of organometallic compound [Cp*Rh(bpy)Cl]Cl.

Detailed reaction conditions for photosensitized NADH regenerations in Figure S2

- 1) Eosin Y: The photoenzymatic reactor contained Eosin Y (50 μ M), [Cp*Rh-(bpy)H₂O]²⁺ (0.5 mM), NAD⁺ (0.2 mM), substrate (α -ketoglutarate, 5 mM), ammonium sulfate (100 mM) and glutamate dehydrogenase (40 U), based on a phosphate buffer (100 mM), with TEOA (15 % w/v) (pH 8.0).
- 2) Ru(bpy)³⁺:^[9a] The system was consisted of an aqueous Tris buffer solution (0.1 M, pH 7.9, 3.75mL), that included Ru(bpy)³⁺ (0.1 mM), 2-mercaptoethanol (20 mM), NADP⁺ (0.88 mM), MV²⁺ (1.76 mM), NH₄⁺ (0.1 M), α-oxoglutarate (0.1 M), glutamate dehydrogenase (22 U) and ferredoxin-NADP+ reductase (0.5 U).
- 3) PEG-chlorophyllide:^[9b] The reaction mixture contained PEG-chlorophyllide conjugate (22.2 mm), ascorbate (8 mm), NADP⁺ (3.2 mm), 2-oxoglutaric acid (8 mm), NH₄Cl (8 mm), glutamate dehydrogenase (40 U), and ferredoxin-NADP+ reductase (2.5 U) in 10 mL of 100 mm phosphate buffer (pH 7.8).
- 4) $W_2Fe_4Ta_2O_{17}$:^[3] The photoenzymatic reactor contained $W_2Fe_4Ta_2O_{17}$ (5 mg), $[Cp^*Rh(bpy)H_2O]^{2+}$ (0.2 mM), NAD^+ (0.1 mM), $(NH_4)_2SO_4$ (5 mM), α -ketoglutarate (0.1 mM) and glutamate dehydrogenase (20 U) based on a 100 mM phosphate buffer, with EDTA (5 mM) (pH 7.0).